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Quantum Logic and Decoherence

Peter Mittelstaedt1

Received

The quantum logical approach to quantum mechanics in Hilbert space presupposes value
definiteness of elementary propositions. Although the description of the measurement
process by sequential quantum logic seems to justify this precondition, it is found to
be incompatible with the quantum theory of measurement, which does not provide
the decoherence of pointer values. The attempts to solve the measurement problem by
means of histories and by quantum gravity fail, since these approaches are based on
sequential quantum logic and its preconditions, too. Finally, we discuss consequences
of these results.
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1. INTRODUCTION

For the Hilbert space HS of a proper quantum system S the algebra of pro-
jection operators PA, PB , . . . which project onto closed linear manifolds MA, MB ,
. . . is given by the Hilbert lattice LH. Except from more complicated properties
(Solér, 1995 ), LH is a complete, orthomodular, and irreducible lattice L Q with
elements 0 and 1. In addition LH is atomic and fulfills the covering law (Jauch,
1968). If these properties are included we denote the lattice by L∗

Q .
It is a most remarkable result that the lattice L Q can be reconstructed as

the lattice of propositions which are elementary, value definite, and restrictedly
available. If the propositions attribute properties to an individual system, then we
can reconstruct even the lattice L∗

Q . This approach to quantum mechanics, called
quantum logic, can be extended by the additional Solér property (Solér, 1995)
leading to the Hilbert lattice LH and finally to the classical Hilbert spaces, making
use of a theorem by Piron (Piron, 1976).

The quantum logical reconstruction of quantum mechanics in Hilbert space
suggests that within the framework of Hilbert space quantum mechanics we can jus-
tify those conditions which were presupposed for elementary propositions. These
conditions are objectification in the measurement process and decoherence of the
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macroscopic pointer properties. However, there are serious difficulties to fulfill
these conditions in Hilbert space quantum mechanics—which are well known as
the measurement problem.

In order to preserve the compatibility of quantum logic with the pragmatic
preconditions of the formal language we will consider here several attempts to
avoid the inconsistency between the quantum logical approach to quantum me-
chanics and the lack of decoherence induced by quantum mechanics. In particular,
we mention here the quantum logical formulation of the history approach by Isham
(Isham, 1994), and the attempt to solve the measurement problem by means of
gravity (Penrose, 1999(a)). Since both approaches do not lead to convincing solu-
tions we will finally discuss some new and not yet elaborated proposals.

2. QUANTUM LANGUAGE AND QUANTUM LOGIC

2.1. Language, Semantics, and Pragmatics

Let S be a proper quantum system and A, B, . . . elementary propositions
which attribute predicates P(A), P(B), . . . to system S at times t1, t2, . . . . Hence,
we write for the elementary propositions A(S, t1), B(S, t2), . . . We will assume
here, that for every elementary proposition A there exists a finite testing procedure
which shows whether or not P(A) pertains to S. If P(A) pertains to S at time t1,
then the proposition A(S, t1) is called to be “true,” otherwise A(S, t1) is said to be
“false.” The assumption, that for every elementary proposition there is a testing
procedure which decides between “true” and “false” means, that these propositions
are “value definite.” Hence, an elementary proposition can either be proved (with
result A) or disproved (with result Ā), where Ā is the counter proposition of A.

Furthermore, we assume that after a successful proof of A a new proof attempt
leads with certainty to the same result, provided the time interval between the two
proof attempts is sufficiently small. This assumption means that there are repeatable
measurement processes, which can be applied to the testing procedures. However,
if after a successful proof of A, say, another proposition B is proved, then a new
proof attempt will in general not lead to the previous positive result. Hence, we will
not assume that two propositions A and B are in general simultaneously decidable.
If accidentally two propositions A and B are always jointly decidable, we will call
A and B to be “commensurable.” In this case, after the proof attempt of B the
result of the previous A–test is still available. However, in the general case the
result of a previous test is only restrictedly available.

On the basis of the set Se
Q of elementary propositions we introduce the logical

connectives by the possibilities to attack or to defend them, i.e. by the possibilities
to prove or to disprove the connective. Here, we consider the sequential conjunction
A � B (A and then B) which refers to two subsequent instants of time t1 and t2
with t1 < t2 and the logical connectives ¬A ( not A), A ∧ B (A and B), A ∨ B
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Fig. 1. Proof–tree for the sequential conjunction A � B. Ā and B̄ are
the counter propositions to A and B.

(A or B), and A → B (if A then B)—which refer to one simultaneous instant
of time. The definitions of the sequential and logical connectives by attack- and
defence schemes can be illustrated most conveniently by chronologically ordered
proof trees. Correspondingly, in the proof tree of the sequential conjunction A � B
as shown in Fig. 1, the first branching point corresponds to a A–test at t1, the
second one to a B–test at t2.

Note, that for the truth of A � B the commensurability of A and B does not
matter. However, for the proof trees of the logical connectives, which refer to one si-
multaneous instant of time, the commensurabilities of the elementary propositions
play an important role. The concepts of truth and falsity of a compound proposition
which is composed by the connectives can then be defined by success and failure
in a proof tree, respectively.—For the details of this well established operational
approach we refer to the literature (Mittelstaedt, 1978, 1987; Stachow, 1980).

Furthermore, we will define here binary relations between propositions. First,
the proof equivalence A ≡ B means that A can be replaced in any proof tree of
a compound proposition by B without thereby changing the result of the proof
tree. Second, the value equivalence A = B means that A is true (in the sense of a
proof tree) if and only if B is true. Third, the relation of implication A ≤ B can
be defined by A ≡ A ∧ B. Hence, the two implications A ≤ B and B ≤ A imply
the proof equivalence A ≡ B. Finally, we mention that A → B is true if and only
if A ≤ B holds.

The full quantum language SQ can then inductively be defined by the set
S

e
Q of elementary propositions and the connectives mentioned. Together with the

always true elementary proposition V , the always false elementary proposition �,
and the three relations the language SQ reads

SQ = {
S

e
Q ; �, ∧, ∨, →, ¬; V , �; ≡, =, ≤ }

. (1)

The connectives are defined by attack- and defence schemes which can be
illustrated by proof trees. In addition, it is important to note that for the sequential
and the logical connectives there are value equivalent elementary propositions, the
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measurement devices of which can explicitly be constructed (Stachow, in press).
Hence, by induction with respect to the connectives one arrives at the result that for
any finitely connected proposition A there is an elementary proposition Ae which
is value equivalent to A, i.e. which satisfies A = Ae. For the algebraic structure of
the language SQ these value equivalent elementary propositions play an important
role.

2.2. Quantum Logic

The semantics described here is a combination of a realistic semantics (for
elementary propositions) and a proof semantics (for connectives). Hence, the truth
of a compound proposition depends on the connectives contained in it as well as
on the elementary propositions and their truth values. However, there are finitely
connected propositions which are true in the sense of the semantics mentioned, ir-
respective of the truth values of the elementary propositions contained in it. These
propositions are called formally true.—The precondition that measurements are
repeatable implies that A → A, the law of identity, is formally true. The value
definiteness of elementary propositions implies that also finitely connected propo-
sitions are value definite and thus A ∨ ¬A, the tertium non datur law, is formally
true. In a similar way, it follows that ¬(A ∧ ¬A), the law of contradiction, and
(A ∧ (A → B)) → B, the modus ponens law, are formally true.—Formally true
propositions can also be expressed by “formally true implications.” E.g. the modus
ponens law reads A ∧ (A → B) ≤ B. In addition, if we make use of the special
propositions V (verum) and � (falsum), then the relations A ≤ V and � ≤ A
hold for all propositions A ∈ SQ . The formal truth of a proposition A can then be
expressed by V ≤ A. E.g. the tertium non datur law reads V ≤ A ∨ ¬A and the
law of contradiction A ∧ ¬A ≤ �.

There are two kinds of propositions A ∈ SQ . If a compound proposition
contains in addition to elementary and commensurability propositions only the
logical connectives ∧, ∨, ∧, and →, then it is called a “logical proposition.” In the
more general case, when the proposition contains also sequential connectives, in
particular the sequential conjunction �, then it is called a “sequential proposition.”
In addition to the formally true logical propositions mentioned above, there are also
formally true sequential propositions. If A and B are logical propositions then A ∧
B ≤ A � B is a formally true implication. The totality of formally true implications
can be summarised in a calculus which contains “beginnings” ⇒ A ≤ B and rules
A ≤ B ⇒ C ≤ D. Here, we distinguish the calculus LQ of formally true logical
propositions and the calculus SQ of formally true sequential propositions. For the
explicit form of these formal systems we refer to the literature (Mittelstaedt, 1978;
Stachow, 1980).

For an algebraic characterisation of the calculi LQ and SQ we consider the
corresponding Lindenbaum–Tarski algebras, i.e. the algebra of equivalence classes



Quantum Logic and Decoherence 1347

which is given here by the algebra of value equivalent elementary propositions.
The Lindenbaum–Tarski algebra of the calculus LQ is given by a complete, ortho-
modular lattice L Q . Subsets of mutually commensurable propositions constitute
a Boolean sublattice L B ⊆ L Q of the lattice L Q (Mittelstaedt, 1987). Moreover,
if the entire quantum language SQ refers to one individual quantum system, then
the lattice L Q is atomic (where the atoms correspond to pure states) and ful-
fills the covering law (Stachow, 1984). In this case we denote the lattice by L∗

Q .
The Hilbert lattice LH of projection operators in Hilbert space (Birkhoff and von
Neumann, 1936) can be obtained from the lattice L∗

Q by adding the Solér law,
the meaning of which is, however, still open (Solér, 1995). Correspondingly, the
Lindenbaum–Tarski algebra of the calculus SQ of sequential quantum logic is
given by a Baer∗ semigroup. We will not go into details here and refer to the liter-
ature (Foulis, 1960; Stachow, 1980). It is well known that by means of a result by
Piron (Piron, 1976) from the lattice LH the three classical Hilbert spaces can be ob-
tained and that for the complex numbers C quantum mechanics in Hilbert space is
achieved.

3. QUANTUM THEORY OF MEASUREMENT

3.1. Quantum Logical Description of the Measurement Process

The quantum theory of measurement in the version of J. von Neumann which
presupposes the objectification of the measurement results as the projection pos-
tulate can be reformulated in terms of quantum logic. Let S = S(W ) be a proper
quantum system S with Hilbert space HS and with the preparation W ∈ L Q , where
the atomic proposition W describes a pure state corresponding to a projection oper-
ator P[ϕ], ϕ ∈ HS . For the experimental test of another elementary proposition A
measurement process must be performed which has two possible outcomes, A and
¬A. This means that after the first step of a measurement process one of the two
sequential propositions W � A or W � ¬A is true for system S. If the conditional
probabilities for A and ¬A are given by p(W, A) and p(W, ¬A), respectively, after
this first step of the measurement process the system is described by the ensemble
�(W ; A) = {p(W, A), p(W, ¬A); W � A, W � ¬A} of two weighted alternatives.
The ensemble �(W ; A) represents the observers knowledge about S after step (I)
of the measurement process.

In a second step (II) this ensemble can be reduced merely by reading to
one of the possible outcomes W � A or W � ¬A, respectively. Hence, the whole
measurement process with result A, say, reads W ⇒(I ) �(W ; A) ⇒(II) W � A. In
step (I) the system S(W ) is changed such that proposition A is objectified, whereas
in step (II) the observers ignorance about S is removed. Hence, in the proof tree of
the elementary proposition A, shown in Fig. 2, step (I) corresponds to the transition
from the preparation W to the classical mixture �(W ; A) of sequential propositions,
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Fig. 2. Proof-tree of proposition A in quantum logic.

whereas the step (II) describes the reduction of this mixture of propositions to
W � A or to W � ¬A by reading.

3.2. Decoherence and the Measurement Problem

The quantum theory of measurement does not reproduce the description of
the measurement process given in the previous subsection. In order to explain this
surprising statement, let us briefly recall the main steps of the contemporary quan-
tum theory of measurement (Busch et al., 1996; Mittelstaedt, 1998). Accordingly,
the measurement process consists of three steps, 1. preparation, 2. premeasure-
ment, and 3. objectification and reading. If the object system is prepared in a pure
state ϕ(S) and the apparatus M in a neutral state �(M), then the compound system
S + M is prepared in the state �(S + M) = ϕ(S) ⊗ �(M). Here we consider a
repeatable unitary premeasurement of a discrete observable A = ∑

ai P[ϕi ] with
eigenstates ϕi and eigenvalues ai . In a second step a unitary operator UA is applied
to the state �(S + M) such that

UA�(S + M) = � ′(S + M) =
∑

ciϕi ⊗ �i (2)

with ci = (ϕi , ϕ) and eigenstates �i of the pointer observable Z = ∑
Zi · P[�i ].

In order to achieve this special biorthogonal decomposition of the state � ′ the
unitary operator UA must fulfill the following calibration condition: If the system
S is prepared in an eigenstate ϕi of A, then the post-premeasurement state reads
� ′ = ϕi ⊗ �i .

If after the premeasurement when the compound system is in the state � ′(S +
M) the system S and the apparatus M are considered as separate objects, then these
systems have to be described by the correlated mixed states

W ′
S =

∑
|ci |2 P[ϕi ] and W ′

M =
∑

|ci |2 P[�i ], (3)

respectively. However, it is a most important theoretical result that these mixed
states do not admit ignorance interpretation. This means that the states W ′

S and
W ′

M must not be considered as weighted mixtures of states �′
S := {ϕi , |ci |2} and
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Fig. 3. Schematic representation of the measurement process in quantum mechanics.

�′
M := {�i , |ci |2}, such that S is actually in state ϕn , say, and the observer doesn’t

know this state but only its probability p(ϕ, an) = |cn|2. Analogously, the apparatus
M is not actually in a state �n and the observer knows only its probability. Hence,
after the premeasurement the values ai and Zi of the object observable A and of
the pointer observable Z are objectively undetermined and not merely subjectively
unknown. (Fig. 3)

However, the final step of the measurement process, reading the results ai and
Zi , presupposes that these values are objectively determined. Hence, there must be
some real process that transforms the mixed states W ′

S and W ′
M into the weighted

mixtures of states �′
S and �′

M , respectively. This process, the objectification, is not
contained in the quantum theory of measurement mentioned. Instead, it is added
to this theory as a new postulate or as a hypothetical assumption. J. von Neumann
called it “projection postulate.” With respect to the objectification of the values Zi

of the macroscopic pointer, the transition from W ′
M to �′

M is called “decoherence.”
These considerations show that the quantum logical description of the mea-

surement process is not reproduced by the quantum theory of unitary premeasure-
ments. Indeed, it is not clear how the transition from the preparation W = P[ϕ]
to the mixture �(W, A) of sequential propositions really works. Hence, step (I)
of the proof tree, the “objectification,” does not correspond to a realisable quan-
tum mechanical process. In particular, this means that elementary propositions
cannot be tested in the described way and are thus not value definite. Hence, the
nonobjectifiability of pointer values, or the lack of decoherence precludes the ba-
sic assumptions of value definitness and finite decidability of quantum logical
propositions.

4. ATTEMPTS TO ACHIEVE POINTER OBJECTIFICATION

4.1. The History Approach

There is an interesting attempt to overcome the problem of objectification
in the measurement process which goes back to Wigner (Wigner, 1971). Since
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quantum mechanics does not lead to an adequate description of the measurement
outcomes, von Neumann introduced the “projection postulate” as an additional
requirement. Wigner tried to present a formulation of quantum mechanics without
the ad hoc introduced projection postulate. For this reason he admits that quantum
mechanics gives only probability connections between successive observations
on quantum systems. Obviously, this formulation gives some primacy to the act
of observation which is considered as an irreducible basic concept in quantum
mechanics.

Let W = W (t0) with W = W +, tr{W } = 1 be the preparation state of a system
S at time t = t0, and PA, PB , and PC observables (projection operators) with
eigenvalues (A, ¬A), (B, ¬B), and (C, ¬C) which are measured successively at
times t1 < t2 < t3, (t1 > t0), respectively. If the successive measurements are not
carried out immediately but at times t1, t2, t3 with finite intervals the projection
operators have to be transformed by some unitary development operator

U (t , t ′) = e−i/ h H (t−t ′), e.g. (4)

PB(t2) = e−i/ h H (t2−t1) PB(t1)ei/ h H (t2−t1). (5)

The probability to find the eigenvalue A after the first measurement is given by

p(W ; PA(t1)) = tr{W (t0)PA(t1)} (6)

and the post-measurement (Lüders) state reads

W ′(t1) = PA(t1)W (t0)PA(t1)

tr{W (t0)PA(t1)} . (7)

The conditional probability for B(t2) given that A(t1) was found then reads

p(W ′; PB(t2)) = tr{PB(t2)PA(t1)W (t0)PA(t1)PB(t2)}
tr{W (t0)PA(t1)} . (8)

Finally, we find the probability to get first A(t1) and then B(t2) by multiplying this
expression with p(W ; PA(t1))

p(W (t0); A(t1) � B(t2)) = tr{PB(t2)PA(t1)W (t0)PA(t1)PB(t2)} (9)

where we have used the notation A � B known from sequential quantum logic.
The generalization of this formula to three and more measurements leads to

p(W (t0); A(t1) � B(t2) � C(t3)) =
tr{PC (t3)PB(t2)PA(t1)W (t0)PA(t1)PB(t2)PC (t3)} (10)

etc. and is known as “Wigner’s formula.” Wigner hoped to avoid the problems
connected with the collapse of the state vector, if quantum mechanics is restricted
to probability statements of this kind. We will comment this conjecture at the end
of this section.
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It is obvious, that the probability of “Wigner’s formula” refers to the prepa-
ration W (t0) and to the sequential proposition Q = A(t1) � B(t2) � C(t3) which
is given by the product PC (t3) · PB(t2) · PA(t1) of projection operators in Hilbert
space. Hence, the subject of Wigner’s probabilities are sequences of time ordered
projection operators, or of time ordered propositions. These expressions are also
called “histories,” or more precisely “homogeneous histories.” The intimate rela-
tion between sequential propositions and “histories” was first elaborated by Isham
(Isham, 1994) in 1994. It must be emphasised that most studies in quantum logic
consider propositions at a single time and are therefore not applicable to the present
problem. However, quantum logic is applicable to the history approach, if in addi-
tion to the theory mentioned the logic of sequential propositions is used. Indeed, as
pointed out by Isham, a “history filter” is a time-labelled version of a “sequential
conjunction.”

Histories were used by many authors as a means for describing the phe-
nomenon of decoherence in large quantum systems without thereby being in con-
flict with quantum mechanics. We mention here in particular the work of Gell-Mann
and Hartle (Gell-Mann and Hartle 1993; Hartle, 1995), Omnes (Omnes, 1994), and
Kiefer (Kiefer, 1996). However, histories provide merely a description of the de-
coherence phenomenon but not its justification. Indeed, if histories are written
explicitly as a time-ordered sequence

h(A) = A1(t1) � A2(t2) � . . . ; t1 ≤ t2 ≤ . . . (11)

of elementary propositions, then it becomes clear that the objectification in the
measurement is already presupposed. The sequential conjunction A(t1) � B(t2)
is defined by two successive measurements at times t1 and t2, respectively. For
every measurement of this kind the objectification of the final results must be
presupposed. Hence, histories cannot be used for justifying the objectification and
decoherence.

4.2. Quantum Gravity

A different way of reasoning refers to quantum gravity. There is a new interest
in sequential quantum logic and its extension to the history approach since some au-
thors consider it as a basis for constructing quantum gravity (Gell-Mann and Hartle,
1993; Hartle, 1995; Isham, 1994). For this program quantum logic must first be
generalised to relativistic quantum logic (Mittelstaedt, 1983). We will not go here
into details. Of course, quantum gravity has its own interest. For the present prob-
lem of objectification and decoherence it becomes relevant, since quantum gravity
could perhaps help understanding the measurement problem. Penrose (Penrose,
1999a,b) and others argue in favour of gravity induced superselection rules. An
experiment, recently proposed by Penrose (Penrose, 1995b) could provide perhaps
a clear-cut test of whether or not objectification is a gravitational phenomenon.
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However, sequential quantum logic as well as the history approach presup-
pose objectification, since sequential conjunctions are time–ordered sequences of
objective facts. Since quantum mechanics leads to the nonobjectifiability of the
measurement outcomes, this result obviously invalidates also sequential quantum
logic, the history approach, and quantum gravity based on it. Hence, quantum
gravity cannot be used for explaining the objectification by gravity induced super-
selection rules, simply since objectification was already presupposed. Obviously,
this way of reasoning is a vicious circle.

5. CONCLUDING REMARKS

Is quantum logic fundamental? We have seen that the most general pragmatic
preconditions of a scientific language imply quantum logic and that quantum logic
leads—together with some additional formal conditions—to the Hilbert space and
to quantum mechanics. Quantum mechanics is consistent with the pragmatic pre-
conditions of quantum logic in the sense that there is no general commensurability
of quantum mechanical propositions. However, quantum mechanics is inconsis-
tent with the pragmatics in the sense that it does not lead to the objectification of
system values after premeasurement. Hence, quantum mechanics cannot justify
the value definiteness of elementary propositions which was presupposed in the
pragmatics.

The quantum theory of unitary premeasurements cannot explain the decoher-
ence of the pointer values. The attempt to explain decoherence by means of con-
sistent histories fails since histories correspond to sequential propositions which
already presuppose the objectification in the measurement process. In addition, if
histories are used as a means to formulate quantum gravity, the influence of grav-
ity on the measurement process cannot be used for the derivation of some gravity
induced pointer objectification. Hence, within the framework of the present con-
siderations we cannot find out where the decoherence in the measurement process
comes from.

If the objectification in the measurement process cannot be explained by the
quantum theory of unitary premeasurements then it suggests itself to begin with
elementary propositions that are not value definite. A formal language and logic of
not necessarily value definite quantum mechanical propositions can be constructed
in various ways, either in analogy to intuitionistic logic (Mittelstaedt, 1978) or by
a modification of the algebraic structure (Dalla Chiara, 1995; Giuntini, 1990).
However, it is still an open question whether in this way a consistent operational
approach to quantum mechanics can be obtained. First, the weak algebraic struc-
tures (Brower–Zadeh logic etc.) must be completed by additional laws (like the
Solér law (Solér, 1995)) in order to achieve the Hilbert lattice and the classical
Hilbert spaces. Furthermore, it must be clarified by means of the quantum the-
ory of measurement (Busch et al., 1996) whether for the unsharp propositions
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discussed here the nonobjectification problems disappear (Busch, 1998). Only
if these questions were answered we could hope to obtain consistency between
quantum language, quantum logic, and quantum mechanics.
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